Part Number Hot Search : 
16LT1 LFXP6 ESH1PA KSM46N15 Z5261 80C012 DF25216 102M0
Product Description
Full Text Search
 

To Download AUIRFS8408TRR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  s d g gds gate drain source hexfet ? is a registered trademark of international rectifier. * qualification standards can be found at http://www.irf.com/ d 2 pak auirfs8408 to-262 auirfsl8408 s d g d d s g hexfet   power mosfet automotive grade 
  
     
  
        
 
      
 
 
    !
" 
 #" $  %
&   " 

  
$"

'#(   % )
 *&
! #"  $ # 
+$, 
- 
   &" ,
  
,
$ # 
"" )
 
*./%. 
0&%.
$1 

 
"  
 2$ 

  ( # 
 
 
"
 
 3
 
, $  ,

 


 !
'$ 
" 
 #" $ )
, 
" 

#"  
" 

3
  , $ 
 #4

#5

" $

( # 
,, 
 4
 
,
$

$ # 


  
,
 "" 3 applications  .  

& 
6. &7  8 
&  & 9& "
0
*4   * 
   &0 & v dss 40v r ds(on) typ. 1.3m max. 1.6m i d (silicon limited) 317a i d (package limited) 195a ordering information base part number package type standard pack complete part number form quantity auirfsl8408 to-262 tube 50 auirfsl8408 auirfs8408 d 2 pak tube 50 auirfs8408 tape and reel left 800 auirfs8408trl tape and reel right 800 AUIRFS8408TRR absolute maximum ratings stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute- maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) avalanche characteristics e as (thermally limited) single pulse avalanche energy  e as (tested) single pulse avalanche energy tested value  i ar avalanche current a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 0.51 c/w r ja junction-to-ambient (pcb mount)  CCC 40 mj 490 see fig. 14, 15, 24a, 24b 294 800 c a 300 -55 to + 175 20 1.96 max. 317  224  1270  195 downloaded from: http:///
    
  
       
   
    
         
         
                  
!   
     
        "#  $%&'  #    !  ( 
  
       )  
*  + *  ,-.+),&&/+#  ,& + 0   ,&&+1  ,&12   

   !  !   0
&&+
3
 4&536+1
1 
+*  5. s d g  2 
 %&&6(
 -7     "*#'  
    !          1
     & 8&71
     "9#'  
    !         1
     & 8&71
 :   
 ;< 2"=#$% >$&?  ' =   

  
 
   <        @$%
#   
*     &. 2 
     
  
    static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br) dss drain-to-source breakdown voltage 40 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 0.032 CCC v/c r ds(on) static drain-to-source on-resistance CCC 1.3 1.6 m v gs( th) gate threshold voltage 2.2 3.0 3.9 v i ds s drain-to-source leakage current CCC CCC 1.0 CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 2.1 CCC dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 211 CCC CCC s q g total gate charge CCC 216 324 q gs gate-to-source charge CCC 51 CCC q gd gate-to-drain ("miller") charge CCC 77 CCC q sync total gate charge sync. (q g - q gd ) CCC 139 CCC t d(on) turn-on delay time CCC 29 CCC t r rise time CCC 202 CCC t d(off) turn-off delay time CCC 108 CCC t f fall time CCC 119 CCC c is s input capacitance CCC 10820 CCC c os s output capacitance CCC 1540 CCC c rss reverse transfer capacitance CCC 1140 CCC c os s eff. (er) effective output capacitance (energy related) CCC 1880 CCC c os s eff. (tr) effective output capacitance (time related) CCC 2208 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current (body diode) i sm pulsed source current (body diode) v sd diode forward voltage CCC 0.9 1.3 v dv/dt peak diode recovery  CCC 5.0 CCC v/ns t rr reverse recovery time CCC 38 CCC t j = 25c v r = 34v, CCC 37 CCC t j = 125c i f = 100a q rr reverse recovery charge CCC 50 CCC t j = 25c di/dt = 100a/ s CCC 50 CCC t j = 125c i rrm reverse recovery current CCC 1.9 CCC a t j = 25c t j = 25c, i s = 100a, v gs = 0v  integral reverse p-n junction diode. v gs = 0v, v ds = 0v to 32v  mosfet symbol showing the r g = 2.4 v gs = 10v  conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 100a v ds = v gs , i d = 250 a v ds = 40v, v gs = 0v v dd = 26v i d = 100a, v ds =0v, v gs = 10v v gs = -20v v ds = 40v, v gs = 0v, t j = 125c v ds =20v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds =0v to 32v  see fig. 11 i d = 100a a nanc ns pf t j = 175c, i s = 100a, v ds = 40v conditions v ds = 10v, i d = 100a i d = 100a v gs = 20v ns nc a CCCCCC CCC CCC 317 1270  downloaded from: http:///
    
  
       
 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width -60 -20 20 60 100 140 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 1000000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 50 100 150 200 250 300 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a downloaded from: http:///
    
  
       
 fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 10msec 1msec operation in this area limited by r ds (on) 100 sec dc limited by package 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 350 i d , d r a i n c u r r e n t ( a ) limited by package -60 -20 20 60 100 140 180 t j , temperature ( c ) 40 41 42 43 44 45 46 47 48 49 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5.0ma -5 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 2500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 25a 52a bottom 100a downloaded from: http:///
    
  
       
 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 24a, 24b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 0.05 duty cycle = single pulse 0.10 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a downloaded from: http:///
    
  
       
    
 !"#  $# fig 17. threshold voltage vs. temperature    %
# &'"#  $#    
 !"#  $#    %
# &'"#  $# fig 16. on-resistance vs. gate voltage -75 -25 25 75 125 175 225 t j , temperature ( c ) 0.5 1.5 2.5 3.5 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) id = 250 a id = 1.0ma id = 1.0a 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 1 2 3 4 5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 100a t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r m ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 40 60 80 100 120 140 160 180 200 220 240 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r m ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 40 80 120 160 200 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c downloaded from: http:///
 (   
  
       
 fig 22. typical on-resistance vs. drain current 0 100 200 300 400 500 i d , drain current (a) 0.0 5.0 10.0 15.0 20.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) vgs = 7.0v vgs = 8.0v vgs = 10v v gs = 6.0v v gs = 5.5v downloaded from: http:///
 )   
  
       
 fig 25a. switching time test circuit fig 25b. switching time waveforms fig 24b. unclamped inductive waveforms fig 24a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 26a. gate charge test circuit fig 26b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 23. *+,
#
#$#"  ! for n-channel hexfet   power mosfets  ?    ?   ?  !  "# p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period - 1  ,1 )  ) ! a !   - + - + + + - - -    #  1
? $%&  ?
$'
()("( ?   &
*+
+ ?
()("(,
$)"

  d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f 1
-. 1 /
* 0.1 % #
1  #  ab* &1 + - 1
1  downloaded from: http:///
 .   
  
       
    
 
      
  :#  

 

##  
6 77  
          
     /

#   *0! 1 /
'
  ,
# 232 4434
+4+ 3!

/#5 downloaded from: http:///
    
  
       
 to-262 part marking information to-262 package outline ( dimensions are shown in millimeters (inches))  
          
     /

#   *0! 1 /
'
   ,
# 232 4434
+4+ 3!

/#5 downloaded from: http:///
    
  
       
    !"#$%&'!( )  
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. downloaded from: http:///
    
  
       
 6 7! 
"##" 1
!#
 8"1"9&$$
$ 66 :'&"""'
' qualification information ? 3l-d 2 pak msl1 3l-to-262-pak n/a rohs compliant yes esd machine model class m4 (+/- 600) ?? aec-q101-002 human body model class h3a (+/- 6000) ?? aec-q101-001 qualification level automotive (per aec-q101) comments: this part number(s) passed automotive qualification. irs industrial and consumer qualification level is granted by extension of the higher automotive level. charged device model class c5 (+/- 2000) ?? aec-q101-005 moisture sensitivity level downloaded from: http:///
    
  
       
  
 ;"""  #"'#
&!

 + 
 


#""!1"# "<="  &  '&
 +
 
"
# 
"&  "  
 "#
& &'"
"
#! "#"  "  #
#"
!
#! 
" "&
! 
 *! 1"#"'#&&>;?@ 

!

 #!"#$
 !"
"  a! "& '#"

#! #"
! #
"" &'
  
 
#! ""
#"!1b 
8" "#
#
"
 ""!#& 

# +
#'  "
  
"&#
#! "
& "  
" 1& 
"
#  &8" "##"'#
&a!

  &a!"!"#
&@# " ""
"!
&" c@ & ##1'
 a!  ""'
 "
 &
#! "
  "" 
 # ""! "
1
 
"""" 
 !"

#! #"' !"
""
"1
& 
#! " # 
"!"'

"
  d& "+"& !"

#! "# 
" !"
""&
!# 
##a!#"'#
'"'!#" 
#! 


 
#1
+"
# "&"" ""1

#! 
"&
! 
#" 
#1""
#"
#
"  
"#
 "
#! 

&"
 
&
" "!## 1!"""  "
 "
"1
1
"! &##
! 
 
 

&# " 1"!1b 
##
" 
" "

#! "
" #&" "# 

1
#& ""#1
&
#! 
"  
#"@""# #"
&""
#
#! 
" #"!##  1!"""   "
"
"1
1
"! & " " 
#! "
#"'###
!&
d# 
!""

""" "##
"!'   
& 1
#

& 
"##
"!

 "!"

& 
& && !
&
#! 
!# "!
&"
b!
# & 
!%&
!#e!! &"
!"
#! "
"! & !##
!!&
d# 
e!"& # #&
#
 #"
 " 
" "!1"#""##"1!
"& ""'"   "
""# '"#@""#"
1
 ""'
!
# 
#   
"
b!
#&""
#&"! &! ##
!!&
d# !""! &  '"&"'' '#'&#"'
 ! !
&
#!  f
#! " #" '#1&," /
'" "' <,/=
&;%, 
," #"'# # ! !#
 ,/ "  
" a!#1  
" 

& 
"e!"  +
#'#'&!"

#! "
 #1,/" '# 
" a!' '# 
#! """
&e!8"
"+#&& "
"
"1

 &' #'!
 a! "
 
&"! &!" 
#! "&#"'#
##
!" !

 
"

 "!""&"  
#!  " #"'#1"
&%f$%..a ! "#1! 1 !#'&#"' 
>;? e!" +
#'#'&&!"
 #"'#
#! "!

 
" 
1 "
"1
!
 "! &a! " 5
 & "!
"
 8" & """    &9$$
$ & 
$    !"  0%!#e#c%'!#
 
.  9< =  (  downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of AUIRFS8408TRR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X